Unterlagen zu den wasserrechtlichen Erlaubnissen

Planfeststellung

St 2142; Neufahrn i. Ndb. - Straubing

Ortsumgehung Mallersdorf

Abschnitt 340; Stat. 1,377 - Abschnitt 420; Stat. 0,523

Aufgestellt: Deggendorf, den 28.04.2017 Staatliches Bauamt	
R. Wufka, Ltd. Baudirektor	

INHALTSVERZEICHNIS

		RBEMERKUNGEN	1
	1.1	Allgemeines, Grundlagen	1
2	BER	RECHNUNGEN	2
	2.1	Berechnung Becken	2
	2.2	Berechnung Versickerflächen	2
	2.3	Zusammenstellung der Berechnung Becken	4
	2.4	Zusammenstellung der Berechnung Versickerflächen	5
3	REG	SFI WERKE	10

1. VORBEMERKUNGEN

1.1 Allgemeines, Grundlagen

Der entwässerungstechnisch untersuchte Trassenabschnitt erstreckt sich über die gesamte Baustrecke vom geplanten Planfeststellungsbeginn im Westen bei St 2142_340_1,377 in Richtung Osten bis Bau-km 4+030 bzw. St 2142_420_0,523.

Durch die Ausführung der Entwässerungsmaßnahmen sind vorhandene Wasserschutzgebiete nicht unmittelbar berührt. Das anfallende Niederschlagwassers wird großflächig über die Dammböschungen abgeleitet und versickert.

Zusätzlich sind 4 lokale Entwässerungsmaßnahmen geplant.

- Die Ableitung des anfallenden Niederschlagwassers des Bauwerks BW 0-4 über Rohrleitungen in ein Rückhaltebecken bei Bau-km 0+630. Als Vorfluter für die Beckenanlage bei Bau-km 0+630 steht das "Altwasser Kleine Laber" zur Verfügung.
- Das anfallende Niederschlagswassers der Unterführung BW 1-1 /
 Grundwasserwanne 1 wird über eine Pumpenanlage und Rohrleitungen zu einer Versickerfläche bei Bau-km 1+560 abgeführt.
- Das anfallende Niederschlagwassers des optionalen Walles mit l\u00e4rmmindernder Wirkung w\u00fcrde \u00fcber eine Versickermulde und einen Muldeneinlaufschacht bei Bau-km 2+280 abgef\u00fchrt.
- Das anfallende Niederschlagswassers am KVP 3 wird zu einer Versickerfläche bei Bau-km 3+530 abgeführt.

Die Ermittlung der anfallenden Niederschlagsmengen von den abflusswirksamen Flächen unter Berücksichtigung der anzusetzenden Regenhäufigkeit bzw. der Wiederkehrzeit eines Regenereignisses sowie die Festlegung des erforderlichen Regenrückhaltebeckens erfolgen auf der Grundlage der gültigen Vorschriften RAS-Ew, des DWA-Arbeitsblattes A 117, A 138 und dem DWA-Merkblatt M 153. Die dafür anzusetzenden Regenspenden (n= 1,0 bis n = 0,2) wurden aus der bundesweiten Starkniederschlagsauswertung des Deutschen Wetterdienstes, mittels KOSTRA- Atlas, entnommen.

2 BERECHNUNGEN

2.1 Berechnung Becken

Regenspende $r_{15,1}$ = 108,3 l/s x ha Kritische Regenspende r_{krit} = 15 l/s x ha Breite BW 0-4 (RQ 11B) = 12,10 m Stützweite BW 0-4 = 125,00 m

abzuleitende Brückenfläche = $12,10 \text{ m} \times 125,00 \text{ m} = 1.512,50 \text{ m}^2$

Abflussbeiwerte:

Fahrbahnwasser Abfluss über Einläufe $\psi = 0.90$

Bemessungszufluss $Q = 108,3 \times 0.9 \times 1.512,50/10.000 = 14,742 \text{ l/s}$

Das Regenrückhaltebecken wird mit einer Jährlichkeit von n=0,2 (=5-jähriges Hochwasser) gerechnet.

Das gesamte Oberflächenwasser der befestigten Verkehrsflächen des Bauwerks BW 0-4 "Brücke über Altwasser KI. Laber", wird über Einläufe und Rohrleitungen gesammelt und über das Regenrückhaltebecken der Vorflut in das "Altwasser KI. Laber" zugeleitet.

2.2 Berechnung Versickerflächen

(à qualitative und quantitative Nachweisführung siehe Abschnitt 2.4)

2.2.1 Versickerfläche KVP 2 bei Bau-km 1+560

Die geplante Verlegung des bestehenden Geh- und Radweges erfolgt innerhalb des Überschwemmungsgebietes HW 100. Daher erfolgt die einer Ausführung Grundwasserwanne. zur Vermeidung einer Überschwemmung des Weges und Einschränkung der Nutzung. Die Grundwasserwanne wird auf HW 100 bemessen. Diese wird inklusive Pumpenstation errichtet. Das anfallende Oberflächenwasser innerhalb der Grundwasserwanne 1 wird aus der tieferen Lage über Rohrleitungen in Versickerfläche 1 gepumpt. Zusätzliche aufzunehmende Wassermengen für Versickerfläche 1 resultieren aus der Ableitung der Straßenentwässerung KVP2.

2.2.2 Versickermulde am optionalen Lärmschutzwall bei Bau-km 2+280

Das anfallende Oberflächenwasser (der Staatsstraße sowie der straßenzugewandten Seite des Lärmschutzwalls) wird über eine Mulde gesammelt und vor Ort versickert. Bei größere Mengen an Oberflächenwasser können diese über einen Muldeneinlaufschacht abgeführt werden. Dieser wird dem bestehenden Regenwasserkanal ergänzt.

2.2.2 Versickerfläche KVP 3 bei Bau-km 3+530

Das anfallende Oberflächenwasser am Kreisverkehrsplatz wird einer Versickerfläche bei Bau-km 3+530 zugeleitet und versickert.

2.3 Zusammenstellung der Berechnung Becken

Wassermengen				
Regenspende	r	= 15,1	108,30	l/s*ha
Fließzeit im Kanal	n	=	5,00	а
Beckenzulauf	Q _{zu}	=	14,74	l/s
daraus berechnete Fläche Au (Qzu / r15, n=1)	A u	=	0,14	ha
Bemessungsgrößen				
Bemessungsgrößen maßgebende Undurchlässige Fläche	A u	=	0,14	ha
	A u Q _{dr, RR}		0,14 8,17	ha l/s

n = 5 10 15 20	höhe [hn[11 14 17	Regenspende [l/s/ha[373 238	Drosselab- flussspende q dr.r.u 60	r und qdr,r,u	spez Speichervol Vs.u
n = 5 10 15 20	[hn[11 14 17	[l/s/ha[373 238	q dr.r.u	313	Vs,u 94
5 10 15 20	11 14 17	373 238	60		94
5 10 15 20	14 17	238	2000		
10 15 20	14 17	238	2000		
15 20	17		60	1770	
20		100		178	107
	10	183	60	123	111
ture:	18	152	60	92	110
30	21	117	60	57	102
45	24	90	60	30	81
60	27	75	60	15	53
			maßesh	endes spezifisches V	folmen 111 m³

gewähltes Volumen 20 m³

2.4 Zusammenstellung der Berechnung Versickerflächen

differenzierte Flächenermittlung - undurchlässige Fläche nach DWA-M 153

		K\	/P2	KV	P3	
Flächentyp (nach DWA-M 153 Tab.2)	Ψmi	AEi [m2]	Aui [m2]	Aei [m2]	Aui [m 2]	
Geländeangleich	0,1	783,5	78	646,2	65	
Versickerfläche	0,1	231,3	23	459,7	46	
Bankett	0,3	728,7	219	650,3	195	
Böschung	0,4	744,2	298	803,8	322	
Mulde	0,4	175,9	70	175,9	70	
Pflasterflächen	0,75	137,9	103	155,7	117	
Asphalt G+R	0,9	478,6	431	552,3	497	
Fahrbahn/Asphalt	0,9	1934,3	1741	2139,2	1925	
	•		2963		3237	

Lärmschutzwall				
AEi [m2]	Aui [m2]			
0	0			
0	0			
508,5	153			
449,1	180			
239,7	96			
0	0			
0	0			
970,0	873			
	1301			

qualitative Gewässerbelastung - Bewertungsverfahren nach DWA-M 153 - Versickerung KVP2

Gewässer (Tabellen A.1a und A.1b)	Тур	Gewässerpunkte
Versickerung	G12	G = 10

Flächenanteil fi (Abschnitt 4)		Lı (Tabe		iche Fi elle A.3)	Abflussbelastung Bi	
A ui	fi	Тур	Punkte	Тур	Punkte	Bi = fi(Li + Fi)
78	0,026	L1	1	F1	5	0,159
23	0,008	L1	1	F1	5	0,047
219	0,074	L1	1	F4	19	1,476
298	0,100	L1	1	F1	5	0,603
70	0,024	L1	1	F4	19	0,475
103	0,035	L1	1	F4	19	0,698
431	0,145	L1	1	F3	12	1,890
1741	0,588	L1	1	F4	19	11,750
2963	1,000			Abfl	ussbelastung B = Σ Bi	B = 17,10

maximal zulässiger Durchgangswert Dmax = G / B	Dmax =	0,58
--	--------	------

 $Verhältnis\ für\ Flächenbelastung=A\ u: A\ s=2963\ m2: 231\ m2=12,83=5:1\ bis\ 15:1=Spalte\ b\ (Tabelle\ A.4a)$

vorgesehene Behandlungsmaßnahmen (Tabellen A.4a., A.4b und A.4c)	Тур	Durchgangswerte Di
Versickerung durch 20 cm bewachsenen Oberboden	D2	0,35
Durchgangswert D =		0,35

Emission quest E = B v D.	F -	5 98
Emissionswert E = B x D:	L-	5,96

Regenwasserbehandlung erfüllt, da E < G

qualitative Gewässerbelastung - Bewertungsverfahren nach DWA-M 153 - Versickerung KVP3

Gewässer (Tabellen A.1a und A.1b)	Тур	Gewässerpunkte
Versickerung	G12	G = 10

	Flächenanteil fi (Abschnitt 4)		Luft Li (Tabelle A.2)		che Fi elle A.3)	Abflussbelastung Bi
A ui	fi	Тур	Punkte	Тур	Punkte	Bi = fi(Li + Fi)
65	0,020	Ĺ1	1	F1	5	0,120
46	0,014	L1	1	F1	5	0,085
195	0,060	L1	1	F4	19	1,205
322	0,099	L1	1	F1	5	0,596
70	0,022	L1	1	F4	19	0,435
117	0,036	L1	1	F4	19	0,722
497	0,154	L1	1	F3	12	1,996
1925	0,595	L1	1	F4	19	11,897
3237	1,000	•		Abflu	ıssbelastung B = Σ Bi	B = 17,06

Regenwasserbehandlung erforderlich, da B > G

maximal zulässiger Durchgangswert Dmax = G / B	Dmax = 0,59

Verhältnis für Flächenbelastung = Au: As = 3237 m2: 460 m2 = 7,04 = 5:1 bis 15:1 = Spalte b (Tabelle A.4a)

vorgesehene Behandlungsmaßnahmen (Tabellen A.4a., A.4b und A.4c)	Тур	Durchgangswerte Di
Versickerung durch 20 cm bewachsenen Oberboden	D2	0,35
Durchgangswert D =	0,35	

Emissionswert E = B x D:	E =	5,97

Regenwasserbehandlung erfüllt, da E < G

qualitative Gewässerbelastung - Bewertungsverfahren nach DWA-M 153 - Versickerung LSW

Gewässer (Tabellen A.1a und A.1b)	Тур	Gewässerpunkte
Versickerung	G12	G = 10

Flächenanteil fi		Luft Li		Fläche Fi		Abflussbelastung Bi	
A ui	fi	Тур	Punkte	Тур	Typ Punkte		(Li+Fi)
153	0,117	L1	1	F4	19	2,345	
180	0,138	L1	1	F1	5	0,828	
96	0,074	L1	1	F1	F1 5 0,442		142
873	0,671	L2	2	F4	19	14,091	
1301	1,000			Abflu	ussbelastung B = Σ Bi	B =	17,71

Regenwasserbehandlung erforderlich, da B > G

maximal zulässiger Durchgangswert Dmax = G / B	Dmax = 0,56

Verhältnis für Flächenbelastung = Au: As = 1301 m2: 96 m2 = 13,55 = 5:1 bis 15:1 = Spalte b (Tabelle A.4a)

vorgesehene Behandlungsmaßnahmen (Tabellen A.4a., A.4b und A.4c)	Тур	Durchgangswerte Di
Versickerung durch 20 cm bewachsenen Oberboden	D2	0,35
Durchgangswert D =		0,35

122		
Emissionswert E = B \times D:	E =	6,20

Entwässerungstechnische Berechnung

Annahmen: Regenspende: $r_{15;1}$ = 108,3 l/s ha

Regenhäufigkeit: n= 0,2 5 $\frac{-j \ddot{a}hriges}{Ereignis}$ k_{\parallel} 5 x 10 $\frac{-5}{m}$ m/s = 0,00005 f_{\parallel} = 1,2

Gesamt Au: 2963 m²

Versickerung nach DWA-A 138 - Versickerfläche KVP2

schrittweise Berechnung des erforerlichen Speichervolumens:

$$A_{s \text{ erf}} = 0.2^* A_u = 592.6 \text{ m}^2$$

$$V_s = [(A_u + A_s)^* 10^{-7} \cdot r_{D(n)} - A_s \cdot k_f / 2]^* D^* 60^* f_z$$

$$V_s = 57.78 \text{ m}^3$$

Einstauhöhe (Muldentiefe): $z_M = V_{erf}/A_s = 0.10 \quad m \le 0.30 \text{ m}$ Nachweis der Entleerungszeit: $t_{EzM} = 2^*z_M/k_f = 1.1 \quad h < t_{Eerf} = 24 \text{ h}$

 $\begin{array}{cccc} \text{Muldenabmesungen:} & V_{s \text{ gerundet}} = & 60,00 & m^3 \\ & \text{Tiefe:} & t_{gewähl} = & 0,30 & m \\ & \text{Fläche:} & \text{Avorhanden} = & 231,30 & m^2 \end{array}$

V_{s vorhanden}= 69,39 m³

Dauer D [min]	Regenspende r _{D(n)} [l/(s*ha)]	V _s [m³]
5	373,2	42,44
10	238,1	50,29
15	183,1	54,31
20	152,0	56,50
30	116,9	57,78
45	89,9	55,57
60	74,6	50,59
90	53,8	27,96
120	42,7	3,17

Nachweis erfüllt und Versickerfläche ausreichend

Versickerung nach DWA-A 138 - Versickerfläche KVP3

 $k_f = 5 \times 10^{-5}$ m/s = 0,00005 $f_z = 1,2$

Gesamt Au: 3237 m

schrittweise Berechnung des erforerlichen Speichervolumens:

$$\begin{array}{lll} A_{s \text{ eff}} &=& 0.2^{*} \ A_{u} = & 647,3 \ m^{2} \\ V_{s} &=& [(A_{u} + A_{s})^{*} 10^{-7} \cdot r_{D(n)} - A_{s} \cdot k_{f} / 2]^{*} D^{*} 60^{*} f_{z} \\ V_{s} &=& 63,12 \ m^{3} \end{array}$$

Einstauhöhe (Muldentiefe): $z_M = V_{eff}/A_s = 0,10 \quad m \le 0,30 \text{ m}$ Nachweis der Entleerungszeit: $t_{E_2M} = 2^*z_M/k_f = 1,1 \quad h < t_{E_{eff}} = 24 \text{ h}$

 $\begin{array}{cccc} \text{Muldenabmesungen:} & V_{s \text{ gerundet}}^{=} & 70,00 & m^3 \\ \text{Tiefe:} & t_{\text{qewähl}}^{=} & 0,30 & m \end{array}$

Fläche: Avorhanden= 459,70 m²

V_{s vorhanden}= 137,91 m³

Dauer Regenspende V_s [m³] r_{D(n)} [l/(s*ha)] D [min] 46,36 5 373,2 10 238,1 54,93 59,33 15 183,1 61,71 20 152,0 30 116,9 63,12 45 89.9 60.70 60 74,6 55,26 90 53,8 30,54 120 42.7 3.47

Nachweis erfüllt und Versickerfläche ausreichend

Entwässerungstechnische Berechnung

Annahmen: Regenspende: $r_{15;1}$ = 108,3 I/s ha

Regenhäufigkeit: n= 0,2 5 $\frac{-j \ddot{a}hriges}{Ereignis}$ k_1 = 5 x 10 $\frac{-5}{m}$ m/s = 0,00005 f_2 = 1,2

Gesamt Au: 1301 m²

Versickerung nach DWA-A 138 - Versickermulde LSW

schrittweise Berechnung des erforerlichen Speichervolumens:

$$A_{s erf} = 0.2 A_u = 260.2 m^2$$

$$V_s = [(A_u + A_s)^* 10^{-7} {}_{\circ} r_{D(n)} - A_{s^*} k_f / 2]^* D^* 60^* f_z$$

$$V_s = 25,37 \text{ m}^3$$

Einstauhöhe (Muldentiefe): $z_{\text{M}} = V_{\text{erf}} / A_{\text{s}} = 0,10 \qquad m \leq 0,30 \text{ m}$

Nachweis der Entleerungszeit: t_{EzM} = $2^*z_{\text{M}}/k_{\text{f}}$ = 1,1 $h < t_{\text{Eerf}}$ = 24 h

Muldenabmesungen: $V_{s \text{ gerundet}}$ = 30,00 m³

V_{s vorhanden}= 72,90 m³

Nachweis erfüllt und Versickerfläche ausreichend

Dauer D [min]	Regenspende r _{D(n)} [l/(s*ha)]	V _s [m³]
5	373,2	18,63
10	238,1	22,08
15	183,1	23,85
20	152,0	24,81
30	116,9	25,37
45	89,9	24,40
60	74,6	22,21
90	53,8	12,28
120	42,7	1,39

3 REGELWERKE

Die einschlägigen Vorschriften und Richtlinien für die hydraulischen Berechnungen sowie der Ableitung und Behandlung von Straßenoberflächenwasser wurden beachtet.

 Richtlinie für die Anlage von Straßen, Teil Entwässerung (RAS-Ew) Ausgabe 2005.

· DWA-A 117

Arbeitsblatt "Bemessung von Regenrückhalteräumen" der Deutschen Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V.

DWA-A 138

Arbeitsblatt "Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser" der Deutschen Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V.

- DWA-M 153

Merkblatt "Handlungsempfehlungen zum Umgang mit Regenwasser" der Deutschen Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V.